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FY22 Progress Outline

• Analytical Resilience Framing

• Urban Rail Transit Network Resilience

• Sampling Strategies for Hybrid Attack Graphs

• Disruption-Robust Community Detection

• Resilient Communication-Based Control 
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Analytical Resilience Framing
• Cyber-physical data-driven systems (CPDDS), 

such critical infrastructures, are best 
represented as network-of-networks

• Network-of-networks highlight challenges 
associated with complexity, uncertainty, 
heterogeneity, dynamics, safety, and reliability

• System decomposition followed by modeling, 
learning, and simulation can generate complex 
scenarios in high consequence settings

• Assuring interconnected networked CPDDS 
requires resilience framing with system 
functionality over time based on the phases of 
plan, absorb, recover, and adapt defined by the 
U.S. National Academy of Sciences

S. Chikkagoudar, S. Chatterjee, R. Bharadwaj, A. Ganguly, S. Kompella, and D. Thorsen. (2022) “Assurance by design for cyber physical data-
driven systems.” In Internet of Things for Defense and National Security–forthcoming, Wiley/IEEE, 1-46.

NRL–PNNL–NU Team

CPDDS Resilience 
Framing Illustration

Network-of-Networks 
Construct for CPDDS
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Urban Rail Transit Network Resilience

• Resilience quantified as ratio of area under the 
resilience curve and area under normal functionality

Watson, J., S. Chatterjee, and A. Ganguly. (2022) “Resilience of urban rail transit networks under compound natural and opportunistic failures.” 
In Proceedings of IEEE Homeland Security Technologies (HST) International Symposium, Virtual Symposium.

PNNL–NU Team

𝑅 is resilience measure; 𝐺 is a 
graph; 𝐸 is disruption event set; 𝐶!
is recovery strategy; 𝑡 is time; and 
𝜓 𝑡 is system functionality at 𝑡.  where, 0 ≤ 𝑅 ≤ 1.

Methodological Workflow

System Resilience Phases 
Proof-of-Concept 
Case Study Region: MA Bay 
Transportation Authority 
Rapid Transit & Light Rail 
System (The “T”) in Boston

The “T” Network “T” with flood map*

* 1-in-100 year flood with 
baseline 36” mean sea level rise
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Network Simulation Results
• Developed compound failure and recovery algorithms
• Simulated resilience curves were generated for 

compound failure (flood followed by opportunistic 
network centrality-based measures) and recovery

• Best strategy: Failure based on flood followed by 95% 
upper bound of random, and Recovery based on                                           
betweenness centrality (𝑅 = 0.4645)

• Worst strategy: Failure                                                   
based on flood followed by                                      
closeness centrality, and 
Recovery based on 5% 
lower bound of random                                                   
(𝑅 = 0.2120)

• Results can inform what-if                                                       
scenario analyses and                                                     
generate insights for                                                    
stakeholder decisions 

Network Fragmentation due to 
Flood-Based Functionality Loss

Simulated Resilience Curves 
with Compound (Flood followed by Opportunistic) 

Failure and Recovery

Resilience Measures for Compound 
Failure and Recovery Strategies
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Sampling Strategies for Hybrid Attack Graphs
• Hybrid Attack Graphs (HAGs) can represent attack 

sequences in a cyber-physical system with discrete        
and continuous elements 

• Analysis and testing of large-scale HAGs is costly

• Efficient graph sampling can generate reduced size 
ensembles while preserving key properties for rapid 
analysis and testing

Subasi, O., S. Purohit, A. Bhattacharya, and S. Chatterjee. (2022) “Impact-driven sampling strategies for hybrid attack graphs.” In Proceedings 
of IEEE HST International Symposium, Virtual Symposium.

PNNL Team

Real-world cyber-physical energy 
system hybrid attack graph: 47% 
node and 68% edge reduction while 

preserving coverage 
Scale-free vulnerability-oriented 
attack graph: 32% node and 58% 

edge reduction with same number of 
target vulnerability types

Original Sample

Original Sample
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Disruption-Robust Community Detection

Hussain, M.T., A. Khan, A. Azad, S. Chatterjee, R. Brigantic, and M. Halappanavar. (2022) “Disruption-robust community detection using 
consensus clustering in complex networks.” In Proceedings of IEEE HST International Symposium, Virtual Symposium.

PNNL–Indiana University Team

• Infrastructure networks exhibit 
community structures that are key 
for understanding failure and 
recovery mechanisms 

• Disruption-robust communities 
can sustain disruptions 

• Detected communities based on 
modularity using Louvain’s 
method; identified consensus 
communities via consensus 
clustering; applied to U.S. power 
grid network data

• Clustering modularity scores 
lower for consensus communities  

Steps for Detecting 
Disruption-Robust Communities 

U.S. Power Grid Network

Distributions of Clustering Modularity 
Scores of Disrupted Networks (left) 
and Consensus Communities (right)
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Resilient Communication-Based Control

• Stealthy data-injection attacks may bypass false-data 
estimation algorithms (in cyber layer) when adversary 
has access to grid-operational data

• Spatial correlations imposed by physical, domain-aware 
relationships is critical in detecting and localizing attacks

§ E.g., power-flow equations and line-flow constraints limit amount 
of energy-flow between neighboring microgrids – can be used to 
detect irregularities in sensor data in communication layer

• Approach: Use graph neural networks to characterize 
temporal and spatial correlations in power-systems data

§ Measurements: real and complex power data from each node 
(phasor measurements) sent via communication layer 

§ Graph neural-embeddings in conjunction with graph filters used 
to characterize the spatio-temporal correlations

§ Graph neural network solves a multi-label classification problem 
to estimate probability of attack at each physical node of network 

Attack

Real-time detection and localization of stealthy data-injection attacks on communication layer of 
interconnected power networks subject to domain-aware dynamics, constraints, and operations

Phasor measurements from each node of a power network
is transmitted using a communication layer to central SCADA
to generate operational set-points. These measurements can be 
falsified by a stealthy adversary to affect operations in a network.
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Methodology and Ongoing Work

• Current test network
§ IEEE 39-bus: simulation via GridLAB-D

• Proposed GNN architecture
§ Input layer: active and complex bus-power injections
§ Graph-filter layers: extract spatial features
§ Dense-layer: probability of attack at each node
§ Output: probability of attack at graph level

Graph Neural Network (GNN) Architecture for 
Detection and LocalizationPower Network Data Resilient Network Defense 

Optimization

• Next Steps
§ GNN model training for different adversarial 

datasets in IEEE 39-bus system (ongoing)
§ Extend to larger IEEE systems to test 

generalizability of approach
§ Integration with a defense optimization framework 

for resilient operations

Bhattacharya, A., S. Chatterjee, M. Halappanavar, and A. Ganguly. (2023) Work-in-progress for IEEE Transactions on Control System 
Technology Journal: Special Issue on Resilient Control of Cyber-Physical Power and Energy Systems

PNNL–NU Team
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FY23 Next Steps

• Defense optimization for resilient network operations 

• Incorporate network topology and dynamics for quantifying resilience 

• Topological data analysis for network resilience



Thank You!


