This presentation does not necessarily reflect the views of the United States Government, and is only the view of the author

Assessing and Communicating Resilience/Efficiency Tradeoffs in Complex Systems

Igor Linkov, PhD

Senior Science and Technology Manager (SSTM), US Army Engineer R&D Center;

Adjunct Professor, Carnegie Mellon University and University of Florida

lgor.Linkov@usace.army.mil

1 October 2022

What Makes Complex Systems (Communities) Susceptible to Threat?

After Linkov and Trump, 2019

Crisis Management, Business Continuity and Resilience

Klasa et al. BMC Geriatrics (2021) 21:5 https://doi.org/10.1186/s12877-020-01965-

What Did the [real] Doctor Say?

REVIEW

System models for resilience in gerontology: application to the COVID-19 pandemic

CRISIS -OXFORD DICTIONARY: a time of great danger, difficulty, or confusion when important decisions must be made -MEDICAL DICTIONARY: the turning point for better or worse in an acute disease Critical Function improved critical function return to baseline immediate fatality early death

Time

Open Access

Outline: Science and Practice of Resilience Uncertainty in Modeling: IAEA Model intercomparisons –

Uncertainty in Modeling: IAEA Model intercomparisons - significant uncertainty driven by judgment of modelers

Science and Crisis: Historical perspectives (Venice), Decision Maker Needs in COVID - New England, Supply Chain Crisis in CA

Resilience Theory: Taxonomy, Measurements, Efficiency/Resilience, By Design and by Intervention

Conclusion: Scientists need to be honest to data, relevant to decisions, and timely in crises.

Igor Linkov Benjamin D. Trump Jesse M. Keenan Editors

Risk, Systems and Decisions

COVID-19: Systemic Risk and Resilience

Springer

Science in the Time of Crises: Chernobyl

Radioactive Contamination of Natural Ecosystems: Seeing the Wood Despite the Trees

Shoji Hashimoto,*^{,†} Igor Linkov,[‡] George Shaw,[§] and Shinji Kaneko[†]

OPEN

SUBJECT AREAS: ENVIRONMENTAL SCIENCES BIOGEOCHEMISTRY POLLUTION REMEDIATION

Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident Shoji Hashimoto', Toshiya Matsuura², Kazuki Nanko', Jaor Linkov², George Shaw⁴ & Shinji Kaneko'

International Atomic Energy Agency Model Intercomparisons

- Multiple types of uncertainty strongly affect modeling results
 - parameter, model, scenario
- Understanding uncertainty is essential to:
 - Conduct analysis consistent with current regulatory guidance
 - Gain trust and confidence

Generally:

 Conclusions can be generalized to a wide range of models and situations.

Risk Analysis, Vol. 23, No. 6, 2003

Model Uncertainty and Choices Made by Modelers: Lessons Learned from the International Atomic Energy Agency Model Intercomparisons[†]

Igor Linkov^{1*} and Dmitriy Burmistrov²

Model vs. Parameter Uncertainty

"Modeler" Uncertainty (Subjectivity)

Familiar "Chernobyl" Scenario within 1 order of magnitude

 Unfamiliar Waste Scenario almost 3 orders of magnitude

Comparison of different SEIR models

Time

What Actually Happened in Guam?

COVID in FEMA/ASPR Reg. 1: Resilience

- The Section is co-led by the Federal Emergency Management Agency (FEMA) and the Assistant Secretary for Preparedness and Response (ASPR), and includes personnel from the United States Army Corps of Engineers (UASCE)
 - The FEMA/ASPR Region 1 Data Analytics Section was established to support the Regional Response Coordination Center (RRCC) COVID-19 response efforts
 - The Section provides modeling and analysis to support and inform decisionmakers on the distribution of resources, fatality management, the Reopening of America efforts, and second wave scenarios

How Can This Be Achieved?

ERDC SEIR Model

- Adapted SEIR approach Splits Infected population into "reported and "unreported
- Dynamics statistically combined with observations and SME knowledge
- Parameters updated daily with new data
- Model parameters change with varying social distancing restrictions
- Prediction uncertainty from unconstrained parameters is characterized

CDC Ensemble Forecast

Fluctuating Uncertainties

A model can never provide a true prediction of the future. Even as this epidemiological model gets fitted to past data — and as more data points are added to that fit the uncertainty in its projections can fluctuate wildly.

FEMA R1-Tool: Translating Model into Institutional Requirements

Compounding Threats: COVID + Hurricanes

npj urban sustainability

www.nature.com

COMMENT OPEN The importance of compounding threats to hurricane evacuation modeling

Jeffrey C. Cegan¹, Maureen S. Golan¹, Matthew D. Joyner ^[]¹² and Igor Linkov ^[]

Flood Inundation Modeling

Modeling of Pandemic Consequences

п

AMBULANCE

HOSPITAL

- Additional PPE needs for shelter workers and emergency management personnel
- Needs for additional shelters to maintain social distancing
- Resource needs to maintain functionality of critical healthcare facilities
- Potential impacts on vulnerable communities (e.g. elderly)

Is Financial Support Efficient? Loan Penetration for Food Services

- The Small Business
 Administration (SBA) backs
 loans to small businesses
 affected by the pandemic
 through the Paycheck
 Protection Program (PPP).
- Low penetration rates in remote areas

Equity Issues

Micro Exposure Model (MEM)

Nature Exposure Science (in press)

- We interpret risk as • the probability of an uninfected employee becoming infected after an encounter.
- Any risk can be • described in a probability framework using spatial and temporal parameters

- **Use Monte Carlo** simulations to account for specific workplace environments and individual employee behavior
- Input parameters are nation wide infection percentage and mask efficacy statistics

www.nature.com/jes

Journal of Exposure Science & Environmental Epidemiology

ARTICLE

Check for updates

MEM Integrates elements of both SEIR and ABM to capture behavioral uncertainty in viral exposure and infection, considering environmental conditions at workplaces

Assessment of the COVID-19 infection risk at a workplace through stochastic microexposure modeling

Sergey Vecherin^{1 &}, Derek Chang¹, Emily Wells^{1,2}, Benjamin Trump¹, Aaron Meyer¹, Jacob Desmond¹, Kyle Dunn¹, Maxim Kitsak³ and Igor Linkov ^{1,2}

Don't conflate risk and resilience

'Risk' and 'resilience' are fundamentally different concepts that are often conflated. Yet maintaining the distinction is a policy necessity. Applying a riskbased approach to a problem that requires a resilience-based solution, or vice versa, can lead to investment in systems that do not produce the changes that stakeholders need.

30 | NATURE | VOL 555 | 1 MARCH 2018 C) 2010 M

COMPUTER PUBLISHED BY THE IEEE COMPUTER SOCIETY

lo Improve Cyber Resilience, Measure It

Alexander Kott, U.S. Army DEVCOM Army Research Laboratory Igor Linkov, U.S. Army Engineer Research and Development Center

The Science and Practice of Resilience

Networks

NATURE ENERGY

Building resilience will require compromise on nature efficiency

CORRESPONDENCE · 08 DECEMBER 2020

Benjamin D. Trump, Igor Linkov 🏧 & William Hyne

Combine resilience and efficiency in post-**COVID** societies

Check for updates

comment

112 COMPUTER PUBLISHED BY THE IEEE COMPUTER SOCIETY

Cyber Resilience: 4 by Design or by Intervention?

Alexander Kott, U.S. Army DEVCOM Army Research Laboratory

Maureen S. Golan, U.S. Engineer Research and Development Center and Credere Associates

Benjamin D. Trump, U.S. Engineer Research and Development Center and University of Michigan

Igor Linkov, U.S. Engineer Research and Development Center and Carnegie Mellon University

Springer

How to Quantify Resilience?

Resilience Matrix

Assessment using Stakeholder Values

Figure 5: Comparative Assessment of Resilience-Enhancing Alternatives

Use developed resilience metrics to comparatively assess the costs and benefits of different courses of action

Table 1 The cyber resilience matrix

Plan and prepare for	Absorb	Recover from	Adapt to
Physical			
 Implement controls/sensors for critical assets [S22, M18, 20] 	 Signal the compromise of assets or services [M18, 20] 	 Investigate and repair malfunctioning controls or sensors [M17] 	 Review asset and service configuration in response to recent event [M17]
(2) Implement controls/sensors for critical services [M18, 20]	(2) Use redundant assets to continue service [M18, 20]	(2) Assess service/asset damage	(2) Phase out obsolete assets and introduce new assets [M17]
(3) Assessment of network structure and interconnection to system components and to the environment	(3) Dedicate cyber resources to defend against attack [M16]	(3) Assess distance to functional recovery	
(4) Redundancy of critical physical infrastructure		(4) Safely dispose of irreparable assets	
(5) Redundancy of data physically or logically separated from the network [M24]			
Information			
 Categorize assets and services based on sensitivity or resilience requirements [S63] 	 Observe sensors for critical services and assets [M22] 	 Log events and sensors during event [M17, 22] 	 (1) Document incident's impact and cause [M17]
(2) Documentation of certifications, qualifications and pedigree of critical hardware and/or software providers	(2) Effectively and efficiently transmit relevant data to responsible stakeholders/ decision makers	(2) Review and compare systems before and after the event [M17]	 (2) Document time between problem and discovery/discovery and recovery [S41]
(3) Prepare plans for storage and containment of classified or sensitive information			(3) Anticipate future system states post-recovery
(4) Identify external system dependencies (i.e., Internet providers, electricity, water) [S31]		Environ	Syst Decis (2013) 33:471–476
(5) Identify internal system dependencies [\$63]		DOI 10	.1007/s10669-013-9485-y
Cognitive		DED	SDECTIVES
(1) Anticipate and plan for system states and events [M18]	 Use a decision making protocol or aid to determine when event can be considered 	(1) Review physical a in order to	SFECTIVES

decisions

"contained"

Resilience Matrix: Cyber

Resilience metrics for cyber systems

Igor Linkov · Daniel A. Eisenberg · Kenton Plourde · Thomas P. Seager · Julia Allen · Alex Kott

Contents lists available at ScienceDirect

Energy Policy

ENERGY POLICY

journal homepage: www.elsevier.com/locate/enpol

Short Communication

Metrics for energy resilience

Paul E. Roege^a, Zachary A. Collier^b, James Mancillas^c, John A. McDonagh^c, Igor Linkov^{b,*}

Resilience Matrix: Energy

	Plan and Prepare for	Refs	Absorb	Refs	Recover from	Refs	Adapt to	Refs
Physical	Reduced reliance on energy/increased efficiency A,B, E,F, H Design margin to accommodate range of Conditions Energy source diversity/ local sources A,E, F,H, E,F, H Limited performance F,H, K		Design margin to accommodate range of conditions Limited performance degradation under changing conditions	B,C, I,J,K B,C, F,I,K	System flexibility for reconfiguration and/or temporary system installation Capability to monitor and control portions of system	C,D, F,H, K B,I, K	Flexible network architecture to facilitate modernization and new energy sources Sensors, data collection and visualization capabilities to support system performance trending	C,D, F,K D,E, I,K
	Energy storage capabilities/ presaged equipment	B,H, K	Operational system protection (e.g., pressure relief, circuit breakers)	I,K	Fuel flexibility	C,D, E,F	Ability to use new/alternative energy sources	C,F, H
	Redundancy of critical capabilities	D,E, I,K	Installed/ready redundant components (e.g., generators, pumps)	D,I, K	Capability to re-route energy from available sources	C,D, F,I,K	Update system configuration/ functionality based upon lessons learned	C,D, L,F,I, K
	Preventative maintenance on energy systems	I,K	Ability to isolate damaged/ degraded systems/ components (automatic/ manual)	E,I,K	Investigate and repair malfunctioning controls or sensors	I	Phase out obsolete or damaged assets and introduce new assets	A,C, D,I, K
	Sensors, controls and communication links to support awareness and response	H,I, K	Capability for independent local/sub-network operation	D,K	Energy network flexibility to re- establish service by priority.	F,I,K	Integrate new interface standards and operating system upgrades	D,I, K
	Protective measures from external attack (physical/ cyber)	A,D, I,K	Alternative methods/ equipment (e.g., paper copy, flashlights, radios)	B,H, K	Backup communication, lighting, power systems for repair/recovery operations	I,K	Update response equipment/ supplies based upon lessons learned	D,L
Information	Capabilities and services prioritized based on criticality or performance requirements	В	Environmental condition forecast and event warnings broadcast	E,H, I	Information available to authorities and crews regarding customer/community needs/ status	D,I	Initiating event, incident point of entry, associated vulnerabilities and impacts identified	A,D, H,I, K
	Internal and external system dependencies identified	B,G, H	System status, trends, margins available to operators, managers and customers	D,E, H,I, K	Recovery progress tracked, synthesized and available to decision-makers and stakeholders	D,I	Event data and operating environment forecasts utilized to anticipate future conditions/ events	D,H, I,K
	Design, control, operational and maintenance data archived and protected	B,I	Critical system data monitored, anomalies alarmed	D,E, I,K	Design, repair parts, substitution information available to recovery teams	K	Updated information about energy resources, alternatives and emergent technologies available to managers and stakeholders	D,F, H,I
	Vendor information available	В	Operational/troubleshooting/ response procedures available	I,K	Location, availability and ownership of energy, hardware and services available to restoration teams	K	Design, operating and maintenance information updated consistent with system modifications	F,I,K

Network-based Resilience Theory?

Network *adaptive algorithms* (*C*) defining how nodes' (links') properties and parameters change with time

A set of possible damages stakeholders want the network to be resilient against (E)

 $R = f(\mathcal{N}, \mathcal{L}, \mathcal{C}, E)$

Lack of resilience in transportation networks: Economic implications

Resilience vs Efficiency at 5% disruption

Resilience and efficiency in transportation networks

Alexander A. Ganin,^{1,2} Maksim Kitsak,³ Dayton Marchese,² Jeffrey M. Keisler,⁴ Thomas Seager,⁵ Igor Linkov²*

Lack of Resilience: Impact on GDP

Source: Marine Exchange of Southern California & Vessel Traffic Service L.A./Long Beach

Bloomberg

UNCLASSIFIED

Technical Approach: Aggregate Freight Flows

- The optimization can be performed using:
 - Aggregate Flows:
 - Individual Commodity Flows (such as refrigerated goods or car parts)
 - Short vs Long Haul

*Presenter notes: shown on the right here is the aggregate flows

US Army Corps of Engineers

Engineer Research and Development Center

UNCLASSIFIED

Application 1: Traffic Policy Decision Tool Project Goal

- **Challenge:** Having a reliable way to compare the relative impact of different policies and investments on freight transit times
- **Solution:** Using AI Model to compare Avoidance and Mitigation Strategies
 - Key Freight corridor expansion
 - Diverting or prioritizing traffic on specific highway segments, lanes, times of day
 - Land use planning controls
 - Investment in infrastructure of alternative modes
 - Incentives to balance variance in round-trip under stress

UNCLASSIFIED

UNCLASSIFIED

Application 2: Optimizing the Location of Medium- and Heavy-Duty Hydrogen Dispensing Stations Technical Approach: Calculating Total Additional Route Diversion

- 1. Define gas stations which are candidates for conversion
- 2. Leverage State-Wide freight flows being developed for CTC
- 3. Compute the total travel time added by making all truck routes pass through a set of gas stations
- 4. Find the set of gas stations which minimize the additional travel time
- 5. Overlap results with additional information

Locating Hydrogen Refueling Stations in CA

COMPUTER PUBLISHED BY THE IEEE COMPUTER SOCIETY

		Risk management	RBD	RBI
Cyber Resilience	Objective	Harden individual components	Design components to be self- reorganizable	Rectify disruption to components and stimulate recovery by external actors
by Design or by	Capability	Predictable disruptions, acting primarily from outside the system components	Either known/predictable or unknown disruptions, acting at a component or system level	Failure in the context of societal needs; there may be a constellation of networks across systems
Alexander Kott, U.S. Army DEVCOM Army Research Laborat	Consequence	Vulnerable nodes and/or links fail as a result of a threat	Degradation of critical functions in time and capacity to achieve system's function	Degradation of the critical societal function due to cascading failure in interconnected networks
Maureen S. Golan, U.S. Engineer Research and Developmen Credere Associates Benjamin D. Trump, U.S. Engineer Research and Developme	Actor	Either internal or external to the system	Internal to the system	Ext
Igor Linkov, U.S. Engineer Research and Development Cente Carnegie Mellon University	Corrective action	Either loosely or tightly integrated with the system	Tightly integrated with the system	
	Stages/ analytics	Prepare and absorb (the risk is a product of a threat, vulnerability, and consequences, and is time independent)	Recover and adapt (explicitly modeled as time to recover system function and the ability to change system configuration in response to threats)	Pre (ex) to r soc the A pepert by the SUBCOMMITTEE ON NETWORKING AND INFORMATION TECHNOLOGY RESEARCH AND DEVELOPMENT COMMITTEE ON SCIENCE AND TECHNOLOGY ENTERPRISE COMMITTEE ON SCIENCE AND TECHNOLOGY ENTERPRISE COMMITTEE ON SCIENCE AND TECHNOLOGY ENTERPRISE

of the NATIONAL SCIENCE AND TECHNOLOGY COUNCIL

SUBCOMMITTEE ON FUTURE ADVANCED COMPUTING ECOSYSTEM COMMITTEE ON TECHNOLOGY

578 | Nature | Vol 603 | 24 March 2022

Stress-test the resilience of critical infrastructure

INTEGRATED RISK/RESILIENCE STRESS TESTING

WHO DOES ANALYSIS?	"Ide	"Identify the functions and failures" "Perfo INPUTS RISK		Perform the stress test"		RESILIENCE	NCE (
Policy Analysts, Generalists	TIER 1	Qualitative information, component data	÷	Develop scenarios for shocks and stresses affecting specific vulnerabilities		Identify critical functions of systems and cascading failures	÷	"Quick win" improvements
Risk Assessors, engineers, decision analysts	TIER 2	System structure, connectivity	÷	Assess risk of component failure under stress scenario separately per domain		Identify connections across multiple system domains that are difficult to recover	÷	System wide resilience strategy
Specialists, modelers	TIER 3	Detailed system information, advanced data	÷	Advance probabilistic risk assessment across multiple domains/compounding threats		Network science/Al techniques to assess failures in interconnected networks	÷	Targeted Changes + Interventions

COMPUTER PUBLISHED BY THE IEEE COMPUTER SOCIETY

		Risk management	RBD	RBI
Cyber Resilience	Objective	Harden individual components	Design components to be self- reorganizable	Rectify disruption to components and stimulate recovery by external actors
by Design or by	Capability	Predictable disruptions, acting primarily from outside the system components	Either known/predictable or unknown disruptions, acting at a component or system level	Failure in the context of societal needs; there may be a constellation of networks across systems
Alexander Kott, U.S. Army DEVCOM Army Research Laborat	Consequence	Vulnerable nodes and/or links fail as a result of a threat	Degradation of critical functions in time and capacity to achieve system's function	Degradation of the critical societal function due to cascading failure in interconnected networks
Maureen S. Golan, U.S. Engineer Research and Developmen Credere Associates Benjamin D. Trump, U.S. Engineer Research and Developme	Actor	Either internal or external to the system	Internal to the system	Ext
Igor Linkov, U.S. Engineer Research and Development Cente Carnegie Mellon University	Corrective action	Either loosely or tightly integrated with the system	Tightly integrated with the system	
	Stages/ analytics	Prepare and absorb (the risk is a product of a threat, vulnerability, and consequences, and is time independent)	Recover and adapt (explicitly modeled as time to recover system function and the ability to change system configuration in response to threats)	Pre (ex) to r soc the A report by the SUBCOMMITTEE ON NETWORKING AND INFORMATION TECHNOLOGY RESEARCH AND DEVELOPMENT COMMITTEE ON SCIENCE AND TECHNOLOGY ENTERPRISE COMMITTEE ON SCIENCE AND TECHNOLOGY ENTERPRISE COMMITTEE ON SCIENCE AND TECHNOLOGY ENTERPRISE

of the NATIONAL SCIENCE AND TECHNOLOGY COUNCIL

SUBCOMMITTEE ON FUTURE ADVANCED COMPUTING ECOSYSTEM COMMITTEE ON TECHNOLOGY

	Traditional Supply Chain Management Approaches	Resilience-by- Design	Resilience-by- Intervention
Threats to Food Security /Supply Chains	Systemic (Climate ch (pandem	ange, social and economi ics, cyber attacks, natural	c changes) and shocks disasters)
Actions and Analytic s/Stage s	Hardening the system based on assessing largely known or predictable risks (i.e. product of threat, vulnerability, and consequence)for prepare and absorb stages.	Engineering systems to be recoverable and adaptable in response to both predicted and unknown threats based on modeling loss of critical system functionality over time.	Resources outside an individual SC (e.g., stockpiles, services, community stakeholder, etc.) available to facilitate recovery and adaptation of systems in case of disruptions
Advant ages of Approa ch	Methodology is well developed and practiced, allows system to retain functionality without disruptions. Works well for known or predictable threats.	System is designed for self-healing and able to quickly respond to either known/predictable or unknown disruptions in the context of its own needs and abilities.	Combined resources and capabilities allows cost saving as well as flexibility to adapt to a much broader range of possible disruptions.
Disadva ntages of Approa ch	Limited to known or predictable threats; cost increases exponentially once low probability high consequence disruptions are considered. Possible catastrophic failure since system are not designed for recovery	System needs to maintain redundant capabilities and training of personnel to maintain and act accordingly. May be quite expensive.	Necessary cooperation and resource allocation among stakeholders, regulators, and other SC players limits speed/viability of corrective action development. Cost may be substantial, but lower than in by-design

Islands and Remote Communities: Food Supply Chains

1800

Martha's Vineyard: Monthly Visits

Januari March March Mont June Jun Muguet entre October October Mont Descentor Pronounced need ongoing in remote, austere, or island communities –Tribal communities on Martha's Vineyard.

Nature Communications (in press)

44)

New Bedford

Edgartown Great Pond

Vision for System Resilience: Social Science/Communication Integration

Model Operations Real World Affiliation/Acquaintance Group Forming Swarming Synchronization Socia Operations Center Applications Services Knowledge Management Management Information Standards Data Storage/Search/Retrieval Alternatives Routed Networks Protocols Network Topology Communication Telecommunications System The Wireless Web, Sensors

Physical

The case for value chain resilience

Igor Linkov, Savina Carluccio, Oliver Pritchard, Áine Ní Bhreasail, Stephanie Galaitsi, Joseph Sarkis and Jeffrey M. Keisler Management Research Review © Emerald Publishing Limited 2040-8269 DOI 10.1108/MRR-08-2019-0353 Environ Syst Decis (2014) 34:378–382 DOI 10.1007/s10669-014-9511-8

PERSPECTIVES

From Un

References

- 1) Linkov, I., Roslycky, L., Trump, B. (2020). Resilience of Hybrid Threats: Security and Integrity for the Digital World. IOS Press.
- Trump, B., Hussain, K., Linkov, I. (2020) Cyber Resilience in Arctic IOS Press.
- Hynes, W., Trump, B.D., Linkov, I. (2020). A Resilience Approach to dealing with COVID-19 and future systemic shocks. Environment, Systems, Decisions, 40(2).
- Golan, M.S., Linkov, I. (2020). Trends in Resilience Analytics in Supply Chain Modeling in the Context of the COVID Pandemic. Env., Systems and Decisions, 40(2).
- 5) Linkov, I., Trump, B. (2019). The Science and Practice of Resilience. Springer, Amsterdam.
- 6) Kott, A., Linkov, I. eds. (2019). Cyber Resilience in Systems and Networks. Springer, Amsterdam.
- 7) Kurth, M., Keenan, J.M., Sasani, M., Linkov, I. (2019). Defining resilience for the US building industry. Building Research and Innovation. 47: 480.
- 8) Linkov, I., Trump, B.D., Keisler, J.M. (2018). Risk and resilience must be independently managed. Nature 555:30.
- 9) Bostick, T.P., Lambert, J.H., Linkov, I. (2018). Resilience Science, Policy and Investment for Civil Infrastructure. Reliability Engineering & System Safety 175:19-23.
- 10) Massaro, E., Ganin, A., Linkov, I., Vespignani, A. (2018). Resilience management of networks during large-scale epidemic outbreaks. Science Reports 8:1859.
- 11) Marchese, D., Reynolds, E., Bates, M.E., Clark, S.S., Linkov, I. (2018). Resilience and sustainability: similarities and differences. Sci Total Environ. 613-614:1275-83.
- 12) Trump, B, Florin, M.V., Linkov, I., eds. (2018). IRGC Resource Guide on Resilience (vol. 2): Domains of resilience for complex interconnected systems. Switzerland.
- 13) Florin, M.V., Linkov, I., eds. (2017). International Risk Governance Council (IRGC) Resource Guide on Resilience. International Risk Governance Center, Switzerland.
- 14) Linkov, I., Palma-Oliveira, J.M., eds (2017). Risk and Resilience. Springer, Amsterdam.
- 15) Ganin, A., Kitsak, M., Keisler, J., Seager, T., Linkov, I., (2017). Resilience and efficiency in transportation networks. Science Advances 3:e1701079.
- 16) Marchese, D., & Linkov, I. (2017). Can You Be Smart and Resilient at the Same Time? Environ. Sci. Technol. 2017, 51, 5867-5868
- 17) Connelly, E. B., Allen, C. R., Hatfield, K., Palma-Oliveira, J. M., Woods, D. D., & Linkov, I. (2017). Features of resilience. Environ Systems and Decisions, 37(1), 46-50.
- 18) Thorisson, H., Lambert, J.H., Cardenas, J.J., Linkov, I., (2017). Resilience Analytics with Application to Power Grid of a Developing Region. Risk Analysis 37:1268
- 19) Gisladottir, V., Ganin, A., Keisler, J.M., Kepner, J., Linkov, I., (2017). Resilience of Cyber Systems with Over- and Under-regulation Risk Analysis 37:1644
- 20) Bakkensen, L., Fox-Lent, C., Read, L., and Linkov, I. (2016). Validating Resilience and Vulnerability Indices in the Context of Natural Disasters. Risk Analysis 37:982.
- 21) Ganin, A., Massaro, E., Keisler, J., Kott, A., Linkov, I. (2016). Resilient Complex Systems and Networks. Nature Scientific Reports 6, 19540.
- 22) Linkov, I., Larkin, S., Lambert, J.H. (2015). Concepts and approaches to resilience in governance. Environment, Systems, and Decisions 35:219-228.
- 23) Fox-Lent, C., Bates, M. E., Linkov, I. (2015). A Matrix Approach to Community Resilience Assessment. Environment, Systems, and Decisions 35(2):205-219.
- 24) Larkin, S., Fox-Lent C., Linkov, I. (2015). Benchmarking Agency and Organizational Practices in Resilience Decision Making. Environ. Syst., & Dec. 35(2):185-195.
- 25) DiMase D, Collier ZA, Linkov I (2015). Systems Engineering Framework for Cyber Physical Security and Resilience. Environment, Systems, and Decisions 35:291.
- 26) Linkov, I., Fox-Lent, C., Keisler, J., Della-Sala, S., Siweke, J. (2014). Plagued by Problems: Resilience Lessons from Venice . Environment, Systems, Decision 34:378
- 27) Linkov, I, Kröger, W., Levermann, A., Renn, O. et al. (2014). Changing the Resilience Paradigm. Nature Climate Change 4:407
- 28) Roege, P., Collier, Z.A., Mancillas, J., McDonagh, J., Linkov, I. (2014). Metrics for Energy Resilience. Energy Policy Energy Policy 72:249
- 29) Park, J., Seager, T, Linkov, I., (2013). "Integrating risk and resilience approaches to catastrophe management in engineering systems," Risk Analy, 33(3), pp. 356.

Risk, Systems and Decisions

Igor Linkov Benjamin D. Trump

The Science and Practice of Resilience

NATO Science for Peace and Security Series - C: Environmental Security

Resilience and Risk

Methods and Application in Environment, Cyber and Social Domains

> Edited by Igor Linkov José Manuel Palma-Oliveira

Der Springer

NATO OTAN *to upported by* The NATO Science for Peace and Security Programme Risk, System and Decisions

Igor Linkov Benjamin D. Trump Jesse M. Keenan Editors

COVID-19: Systemic Risk and Resilience

