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What is 
exascale?

Pre-exascale

Intro
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Summit: Pre-exascale (IBM+Nvidia)
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Significant Challenges
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• Load balancing

• Work-division between host 
and GPU(s)

• Deep memory hierarchies 
(unified memory)

• Data movement

• Load balancing

• Communication and 
computation balance

• Complicated programming 
models (MPI+…+…)

• Data movement

• Load balancing

• Sparse & irregular 
memory accesses

• Coalesced memory 
accesses

• SIMD & thread 
divergence
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• Algorithms
• Applications
• Software

Influence maximization

Intro Influence maximization

Image Credit: https://blog.edmentum.com/making-social-network-work-school
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The influence maximization problem

• Given: A graph G=( V, E, w ), a diffusion model (how a vertex gets activated 
based on the state of its neighbors), and a budget k, the influence 
maximization problem is stated as follows:

Find a set of k vertices called the seed set S, that when activated results in 
maximal activations in the network amongst all possible sets of k vertices

• Two diffusion models studied in our work:
§ Linear Threshold: A vertex can get activated if a fraction of neighboring vertices that are 

active is greater than a threshold Θv

§ Independent Cascade: One shot chance for an activated vertex to activate its neighbor

Algorithm Application Software

7



8

Submodularity: An illustrative example

Optimal:



Greedy Hill Climbing: Key steps

1. Generate a set of n random samples SG
§ Different instantiations of G are computed based on the edge probabilities

2. Repeat until k most influential nodes are chosen: 
1. Compute the influence of a chosen node across different samples w.r.t. the current 

seed set S
2. Pick the best influential node, and add to S

Key algorithmic difference between Linear Threshold and Independent 
Cascade algorithms arise in Step 1 (generation of random samples)
Approximation Factor: (1 - 1/e) - 𝛆 (submodularity)

1

2
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EpiControl: Controlling epidemic spread

•EPICONTROL: Given a graph G, a set of 
initially infected nodes B, and a budget k, 
find a set of nodes S⊆V to vaccinate, such 
that |S|≤k and 𝔼[𝜆(𝑆)] is maximized, where 
𝜆(𝑆) represents the number of lives saved

•PREEMPT: Given a graph G and budget k, 
find a set of nodes S⊆V to vaccinate, such 
that |S|≤k and 𝔼[𝜎(𝑆)] is maximized, treating 
S as the initial set of activated nodes, and 
where 𝜎(𝑆) represents the reachability of S 
in G

•EPICONTROL on trees is submodular 

A comparison of the percentages of population 
infected with and without our proposed method 
PREEMPT, for three contact networks of Portland. 

Even with relatively low budgets for vaccination (1000 
and 5000 nodes), we obtain anywhere between 2.61x 

to 6.75x reduction in the percentages of reduction 
without PREEMPT.

Portland-141k Portland-295k Portland-415k
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Algorithm Application Software
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Ripples & cuRipples
Scalable implementations (shared and distributed memory systems) 

https://github.com/pnnl/ripples

CuRipples achieves a speedup of 790x over a state-of-the-art serial 
implementation, while also significantly improving the quality. 

The input network is com-Orkut.

Algorithm Application Software
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Strong scaling on Summit (Hill Climbing)
Fig. 7: PREEMPT-HC Task Execution Time for the first 100 tasks executed by 84 worker threads (Rank 0 to Rank 77 on CPUs
on the bottom; Rank 78 to Rank 83 on GPUs on the top) for 50 iterations of the algorithm, for two inputs (DBLP on the left
and Portland on the right) on Node Zero of Summit. Each iteration selects one seed. There is a significant difference in the
performance behavior for the two inputs, and in the performance on CPUs versus GPUs for early versus later iterations.
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(f) Montgomery

Fig. 8: Strong Scaling for PREEMPT-HC on the SNAP networks (a-d) and the Contact Networks (e-f). Please note that the
missing data points are executions that did not complete under two hours.
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Strong Scaling using SNAP networks (a-d) and the Contact Networks (e-f). 
Missing data points are executions that did not complete under two hours.
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• Counting step dominates total time, and 
scales well -- large speedups (e.g., 
Slashdot: 63x, Montgomery: 155x)

• Strong scaling: Speedups for 128 nodes 
between 20x and 33x relative to two nodes 
of Summit

• Significantly reduces time to solution from 
hours to minutes (Slashdot: 1.8 hours on 
two Summit nodes vs. 3.2 minutes on 128 
Summit nodes)



Strong scaling on Summit (Rev Reachable)
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• Algorithms
• Applications
• Software

Community detection

Intro Inf max Community detection
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Graph Clustering

• Problem: Given G=(V, E, w), identify tightly knit groups 
(clusters) of vertices that strongly correlate to one another 
within their group, and sparsely so, outside 

Input :
• V = {1,2,… n }   
• E: a set of M edges 
• w(e): weight of edge e

(non-negative)
• m = S"eÎE w(e)

Output :
A partitioning of V into 
k mutually disjoint clusters 

P = {C1, C2,… Ck}   
such that: …

Algorithm Application Software
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Louvain method (Blondel et al. 2008)

Multi-phase multi-iterative heuristic
Within each iteration: 
• For every vertex i Î V: 

1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for 

moving i into each of i’s neighboring 
communities

3. Let Cmax : neighboring community with 
largest DQ

4. If (DQ>0)  {Set C(i) = Cmax}

Input: G=(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

Next
phase

Upon no further
modularity gain

5 4

3

2

1
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Our Parallel Algorithm: Grappolo
G(V,E,w)

Vertex
Following*

Coloring*

* Steps are optional

PARALLEL FOR each vertex i Î Vc: 
1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for 

moving i into each of i’s neighboring 
communities

3. Let Cmax : neighboring community 
with largest DQ (ML)

4. If (DQ>0)  { Set C(i) = Cmax }

For every color set

Check for convergenceno

yes
Transform graph by collapsing

communities into nodes
G’(V’,E’,w’)

Rebuilding is nontrivial, but takes 1-10% of total time
18



FastPG: Fast clustering of millions of single cells

Step 1. kNN-approximation HNSW, which has 
logarithmic scaling due to the hierarchical structure 
of the search space (depicted). The output of this 
step is a network of cells, where each node is a cell 
and neighbor are connected by an edge.

Step 2. Modification of the Jaccard index step to run 
in parallel, depicted as being distributed to each 
thread of the CPU. This step adds weights to the 
network, which are represented as different edge 
thicknesses.

Step 3. Grappolo: The output of this step is the 
assignment of cells to communities, which was 
depicted with different colored nodes.

https://www.biorxiv.org/content/10.1101/2020.06.19.159749v2Lead: Sara Selitsky

Algorithm Application Software
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FastPG: “Gold standard” datasets

(Left) Boxplot displaying the F-measure for four mass cytometry “gold standard” datasets.

(Right) Runtime comparisons between PhenoGraph, FastPG, PARC, and FlowSOM.

https://www.biorxiv.org/content/10.1101/2020.06.19.159749v2
20
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Tools

http://hpc.pnl.gov/people/hala/grappolo.html

§ Grappolo: Scalable multi-threaded
implementation using OpenMP

§ Rundemanen: Scalable single-GPU 
implementation using CUDA

§ Vite: Scalable distributed-memory
implementation using MPI+OpenMP

§ cuVite: Scalable distributed-memory
implementation MPI+OpenMP+CUDA

§ miniVite: Simplified variant of Vite for 
benchmarking (ECP Proxy App)

Algorithm Application Software
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Single-GPU

Naim, Manne, Halappanavar, and Tumeo. Community 
Detection on the GPU. In 2017 IEEE International 
Parallel and Distributed Processing Symposium 
(IPDPS) (pp. 625-634). 

Speedup w.r.t. sequential (Blondel et al.)

Algorithmic innovation:

• Edge-centric parallelism implemented 
with GPU threads

• Load-balancing by bucketing of vertices 
that have nearly identical degree

Limitations:
• Maximum problem size limited by GPU 

memory
• Optimizations applicable for single GPU

300

90

20
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Distributed Grappolo: Vite

We implement heuristics on top of the baseline distributed version, yielding speedups
of up to 2.5-46x (compared to baseline), modularity affects sometimes by ~8-20%

However, heuristics have little impact for some inputs! 23



cuVite: Experiments on Summit

(a) 25 million vertices. (b) 33 million vertices. (c) 67 million vertices.

(a) ljournal dataset. (b) Hollywood-2009 dataset. (c) UK-2002 dataset.

(a) uk-2005 dataset. (b) nlpkkt-240 dataset. (c) com-Friendster dataset.

performance enhancement using work sharing between CPUs
and GPUs using multi-threaded implementation on CPUs;
and large-scale application study for community detection in
graphs from life sciences and atmospheric radiation measure-
ments.
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• Preliminary results for strong 
scaling on up to 64 nodes on 
Summit

• Significant overhead due to data 
structure limitations

• Hybrid CPU-GPU code is harder 
to optimize due to load 
imbalances

• Several optimizations are planned 
for implementation
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Other graph algorithms

• Matching or linear assignment problem
§ B-matching, submodular matching, covering, streaming, etc.

• Graph coloring
§ Distance-1 coloring, balanced coloring, partial distance-2 coloring, etc.

• Network alignment
§ Framework for using heuristics, subgraph isomorphism

• PageRank centrality computations
§ Approximate computing for scalability, Laplacian solver

• Chordal subgraph extraction

Intro Inf max Com-det Other algos
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