
Graph Analytics
in the

accelerator-
enabled

Exascale Era

Mahantesh Halappanavar on behalf of

the ExaGraph Team

02 Nov 2022
SERDP All-hands

Acknowledgements

www.exagraph.org

PNNL Partners
Arun Sathanur
Sam Chatterjee
Jason McDermott
Sam Silva
Abhishek Somani
Ajay Panyala
S. Krishnamoorthy
…

ExaGraph Core Team
[Nitin Gawande]
Sayan Ghosh
Ananth Kalyanaraman
Ariful Khan
Marco Minutoli
Kaisa Swirydowicz
Nathan Tallent
Antonino Tumeo

External Collaborators
Alex Pothen (Exagraph)
Aydin Buluc (Exagraph)
Erik Boman (Exagraph)
Prathyush Sambathuru
Anil Vullikanti
Sara Selitsky
…

2

Research Interns
Hao Lu
Md Naim
Tony Liu
Ferdous SM
Ahammed Ullah
Sid Das
Reet Barik
Sriram S.
Rounak M
…

What is
exascale?

Pre-exascale

Intro

3

1018

Summit: Pre-exascale (IBM+Nvidia)

Single GPU
(2048 x 80) threads)

Single Node
(6 GPUs)

Distributed Multi-GPU Cluster
(4608 nodes)

CPU 0

256 GB
(DDR4)

Summit “Witherspoon” Node
(2) IBM Power9 + (6) NVIDIA Volta V100

(100 GB/s)NVLink2

GPU 0 GPU 1 GPU 2

16 GB
(HBM2)

16 GB
(HBM2)

16 GB
(HBM2)

0 (0-3)

8 (32-35)

16 (64-67)

1 (4-7)

9 (36-39)

17 (68-71)

2 (8-11)

10 (40-43)

18 (72-75)

3 (12-15)

11 (44-47)

19 (76-79)

4 (16-19)

12 (48-51)

20 (80-83)

5 (20-23)

13 (52-55)6 (24-27)

14 (56-59)7 (28-31)

15 (60-63)

CPU 1

256 GB
(DDR4)

GPU 3 GPU 4 GPU 5

16 GB
(HBM2)

16 GB
(HBM2)

16 GB
(HBM2)

22 (88-91)

30 (120-123)

38 (152-155)

23 (92-95)

31 (124-127)

39 (156-159)

24 (96-99)

32 (128-131)

40 (160-163)

25 (100-103)

33 (132-135)

41 (164-167)

26 (104-107)

34 (136-139)

42 (168-171)

27 (108-111)

35 (140-143)28 (112-115)

36 (144-147)29 (116-119)

37 (148-151)

64 GB/s

135 GB/s 135 GB/s

(900 GB/s)

𝟐𝟎𝟒𝟖 Threads
SM x

𝟖𝟎 SMs
GPU

x
𝟔GPUs
Node

x 𝟒𝟔𝟎𝟖Nodes= 4.53 Billion GPU Threads

4

Significant Challenges

CPU 0

256 GB
(DDR4)

Summit “Witherspoon” Node
(2) IBM Power9 + (6) NVIDIA Volta V100

(100 GB/s)NVLink2

GPU 0 GPU 1 GPU 2

16 GB
(HBM2)

16 GB
(HBM2)

16 GB
(HBM2)

0 (0-3)

8 (32-35)

16 (64-67)

1 (4-7)

9 (36-39)

17 (68-71)

2 (8-11)

10 (40-43)

18 (72-75)

3 (12-15)

11 (44-47)

19 (76-79)

4 (16-19)

12 (48-51)

20 (80-83)

5 (20-23)

13 (52-55)6 (24-27)

14 (56-59)7 (28-31)

15 (60-63)

CPU 1

256 GB
(DDR4)

GPU 3 GPU 4 GPU 5

16 GB
(HBM2)

16 GB
(HBM2)

16 GB
(HBM2)

22 (88-91)

30 (120-123)

38 (152-155)

23 (92-95)

31 (124-127)

39 (156-159)

24 (96-99)

32 (128-131)

40 (160-163)

25 (100-103)

33 (132-135)

41 (164-167)

26 (104-107)

34 (136-139)

42 (168-171)

27 (108-111)

35 (140-143)28 (112-115)

36 (144-147)29 (116-119)

37 (148-151)

64 GB/s

135 GB/s 135 GB/s

(900 GB/s)

• Load balancing

• Work-division between host
and GPU(s)

• Deep memory hierarchies
(unified memory)

• Data movement

• Load balancing

• Communication and
computation balance

• Complicated programming
models (MPI+…+…)

• Data movement

• Load balancing

• Sparse & irregular
memory accesses

• Coalesced memory
accesses

• SIMD & thread
divergence

5

• Algorithms
• Applications
• Software

Influence maximization

Intro Influence maximization

Image Credit: https://blog.edmentum.com/making-social-network-work-school

6

The influence maximization problem

• Given: A graph G=(V, E, w), a diffusion model (how a vertex gets activated
based on the state of its neighbors), and a budget k, the influence
maximization problem is stated as follows:

Find a set of k vertices called the seed set S, that when activated results in
maximal activations in the network amongst all possible sets of k vertices

• Two diffusion models studied in our work:
§ Linear Threshold: A vertex can get activated if a fraction of neighboring vertices that are

active is greater than a threshold Θv

§ Independent Cascade: One shot chance for an activated vertex to activate its neighbor

Algorithm Application Software

7

8

Submodularity: An illustrative example

Optimal:

Greedy Hill Climbing: Key steps

1. Generate a set of n random samples SG
§ Different instantiations of G are computed based on the edge probabilities

2. Repeat until k most influential nodes are chosen:
1. Compute the influence of a chosen node across different samples w.r.t. the current

seed set S
2. Pick the best influential node, and add to S

Key algorithmic difference between Linear Threshold and Independent
Cascade algorithms arise in Step 1 (generation of random samples)
Approximation Factor: (1 - 1/e) - 𝛆 (submodularity)

1

2

9

EpiControl: Controlling epidemic spread

•EPICONTROL: Given a graph G, a set of
initially infected nodes B, and a budget k,
find a set of nodes S⊆V to vaccinate, such
that |S|≤k and 𝔼[𝜆(𝑆)] is maximized, where
𝜆(𝑆) represents the number of lives saved

•PREEMPT: Given a graph G and budget k,
find a set of nodes S⊆V to vaccinate, such
that |S|≤k and 𝔼[𝜎(𝑆)] is maximized, treating
S as the initial set of activated nodes, and
where 𝜎(𝑆) represents the reachability of S
in G

•EPICONTROL on trees is submodular

A comparison of the percentages of population
infected with and without our proposed method
PREEMPT, for three contact networks of Portland.

Even with relatively low budgets for vaccination (1000
and 5000 nodes), we obtain anywhere between 2.61x

to 6.75x reduction in the percentages of reduction
without PREEMPT.

Portland-141k Portland-295k Portland-415k
0

5

10

15

20

25

30

35

P
er

ce
nt

ag
e

of
po

pu
la

ti
on

in
fe

ct
ed

Without Preempt

Preempt(1000)

Preempt(5000)

Algorithm Application Software

10Acknowledgements: Sambaturu, Vullikanti, et al.

Ripples & cuRipples
Scalable implementations (shared and distributed memory systems)

https://github.com/pnnl/ripples

CuRipples achieves a speedup of 790x over a state-of-the-art serial
implementation, while also significantly improving the quality.

The input network is com-Orkut.

Algorithm Application Software

11

https://github.com/pnnl/ripples

Strong scaling on Summit (Hill Climbing)
Fig. 7: PREEMPT-HC Task Execution Time for the first 100 tasks executed by 84 worker threads (Rank 0 to Rank 77 on CPUs
on the bottom; Rank 78 to Rank 83 on GPUs on the top) for 50 iterations of the algorithm, for two inputs (DBLP on the left
and Portland on the right) on Node Zero of Summit. Each iteration selects one seed. There is a significant difference in the
performance behavior for the two inputs, and in the performance on CPUs versus GPUs for early versus later iterations.

0

500

1000

1500

2000

2 4 8 16 32 64 128
Summit Nodes (#)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Sampling Counting SeedSelect Total

(a) HepPh

0

1000

2000

3000

2 4 8 16 32 64 128
Summit Nodes (#)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Sampling Counting SeedSelect Total

(b) Epinions

0

2000

4000

6000

2 4 8 16 32 64 128
Summit Nodes (#)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Sampling Counting SeedSelect Total

(c) Slashdot

0

1000

2000

3000

4000

2 4 8 16 32 64 128
Summit Nodes (#)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Sampling Counting SeedSelect Total

(d) DBLP

0

2000

4000

6000

2 4 8 16 32 64 128
Summit Nodes (#)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Sampling Counting SeedSelect Total

(e) Portland

0

50

100

150

200

2 4 8 16 32 64 128
Summit Nodes (#)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Sampling Counting SeedSelect Total

(f) Montgomery

Fig. 8: Strong Scaling for PREEMPT-HC on the SNAP networks (a-d) and the Contact Networks (e-f). Please note that the
missing data points are executions that did not complete under two hours.

9

Strong Scaling using SNAP networks (a-d) and the Contact Networks (e-f).
Missing data points are executions that did not complete under two hours.

12

• Counting step dominates total time, and
scales well -- large speedups (e.g.,
Slashdot: 63x, Montgomery: 155x)

• Strong scaling: Speedups for 128 nodes
between 20x and 33x relative to two nodes
of Summit

• Significantly reduces time to solution from
hours to minutes (Slashdot: 1.8 hours on
two Summit nodes vs. 3.2 minutes on 128
Summit nodes)

Strong scaling on Summit (Rev Reachable)

●

●

●

●

●

●

16

64

256

2 4 8 16 32 64 128
Number of Summit Nodes

Ex
ec

ut
io

n
Ti

m
e

(s
)

Input
● BerkStan

Google

LiveJournal

Montgomery

Orkut

Portland

Strong Scaling using SNAP networks
13

References: Inf max
o [PREEMPT] M Minutoli, M Halappanavar, A Tumeo, A Kalyanaraman, A Vullikanti, and P Sambaturu. "PREEMPT: Scalable Epidemic

Interventions Using Submodular Optimization on Multi-GPU Systems." In ACM/IEEE International Conference for High Performance
Computing, Network, Storage and Analysis (SC’20). Nov 9--19, 2020. Held virtually.

o [Ripples] M Minutoli, M Halappanavar, A Kalyanaraman, A Sathanur, R Mcclure, J McDermott. “Fast and scalable implementations of
influence maximization algorithms.” In Proceedings of the IEEE Cluster conference (CLUSTER'19), 12 pages, 2019.

o [cuRipples] M. Minutoli, M Drocco, M Halappanavar, A Tumeo, and A Kalyanaraman. “CuRipples: Influence Maximizationon Multi-
GPU Systems,” In proceedings of the International Conference on Supercomputing (ICS20), June 29 - July 2, 2020 in Spain.

o [Cascade] Halappanavar M, A Sathanur, and A Nandi. "Accelerating the Mining of Influential Nodes in Complex Networks through
Community Detection." In proceedings of the ACM International Conference on Computing Frontiers. May 16 - 18, 2016. Italy.

o A Sathanur, M Halappanavar, Y Shi, and Y Sagduyu. "Exploring the Role of Intrinsic Nodal Activation on the Spread of Influence in
Complex Networks." in Lecture Notes in Social Networks (LNSN). 2018.

o U Bhatia, S Chatterjee, A Ganguly, M Halappanavar, R Tipireddy, and R Brigantic. "Aviation Transportation, Cyber Threats, and
Network-of-Networks: Conceptual Framing and Modeling Perspectives for Translating Theory to Practice." Accepted for publication in
proceedings of the IEEE International Symposium on Technologies for Homeland Security (HST). October 23 - 24, 2018 Woburn, MA.

o A Sathanur, M Halappanavar, S Chaterjee, A Ganguly, and K Clark, “Identification of Critical Airports from the Perspective of Delay
and Disruption Propagation in Air Travel Networks”, IEEE Symposium on Technologies for Homeland Security, Boston, Nov 2019

o A Sathanur, and M Halappanavar. "Influence Maximization on Complex Networks with Intrinsic Nodal Activation." Accepted for
publication in proceedings of the 8th International Conference on Social Informatics (SocInfo). Bellevue, WA, USA. November 2016.

14

• Algorithms
• Applications
• Software

Community detection

Intro Inf max Community detection

15

Graph Clustering

• Problem: Given G=(V, E, w), identify tightly knit groups
(clusters) of vertices that strongly correlate to one another
within their group, and sparsely so, outside

Input :
• V = {1,2,… n }
• E: a set of M edges
• w(e): weight of edge e

(non-negative)
• m = S"eÎE w(e)

Output :
A partitioning of V into
k mutually disjoint clusters

P = {C1, C2,… Ck}
such that: …

Algorithm Application Software

16

Louvain method (Blondel et al. 2008)

Multi-phase multi-iterative heuristic
Within each iteration:
• For every vertex i Î V:

1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for

moving i into each of i’s neighboring
communities

3. Let Cmax : neighboring community with
largest DQ

4. If (DQ>0) {Set C(i) = Cmax}

Input: G=(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

Next
phase

Upon no further
modularity gain

5 4

3

2

1

17

Our Parallel Algorithm: Grappolo
G(V,E,w)

Vertex
Following*

Coloring*

* Steps are optional

PARALLEL FOR each vertex i Î Vc:
1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for

moving i into each of i’s neighboring
communities

3. Let Cmax : neighboring community
with largest DQ (ML)

4. If (DQ>0) { Set C(i) = Cmax }

For every color set

Check for convergenceno

yes
Transform graph by collapsing

communities into nodes
G’(V’,E’,w’)

Rebuilding is nontrivial, but takes 1-10% of total time
18

FastPG: Fast clustering of millions of single cells

Step 1. kNN-approximation HNSW, which has
logarithmic scaling due to the hierarchical structure
of the search space (depicted). The output of this
step is a network of cells, where each node is a cell
and neighbor are connected by an edge.

Step 2. Modification of the Jaccard index step to run
in parallel, depicted as being distributed to each
thread of the CPU. This step adds weights to the
network, which are represented as different edge
thicknesses.

Step 3. Grappolo: The output of this step is the
assignment of cells to communities, which was
depicted with different colored nodes.

https://www.biorxiv.org/content/10.1101/2020.06.19.159749v2Lead: Sara Selitsky

Algorithm Application Software

19

https://www.biorxiv.org/content/10.1101/2020.06.19.159749v2

FastPG: “Gold standard” datasets

(Left) Boxplot displaying the F-measure for four mass cytometry “gold standard” datasets.

(Right) Runtime comparisons between PhenoGraph, FastPG, PARC, and FlowSOM.

https://www.biorxiv.org/content/10.1101/2020.06.19.159749v2
20

https://www.biorxiv.org/content/10.1101/2020.06.19.159749v2

Tools

http://hpc.pnl.gov/people/hala/grappolo.html

§ Grappolo: Scalable multi-threaded
implementation using OpenMP

§ Rundemanen: Scalable single-GPU
implementation using CUDA

§ Vite: Scalable distributed-memory
implementation using MPI+OpenMP

§ cuVite: Scalable distributed-memory
implementation MPI+OpenMP+CUDA

§ miniVite: Simplified variant of Vite for
benchmarking (ECP Proxy App)

Algorithm Application Software

21

http://hpc.pnl.gov/people/hala/grappolo.html

Single-GPU

Naim, Manne, Halappanavar, and Tumeo. Community
Detection on the GPU. In 2017 IEEE International
Parallel and Distributed Processing Symposium
(IPDPS) (pp. 625-634).

Speedup w.r.t. sequential (Blondel et al.)

Algorithmic innovation:

• Edge-centric parallelism implemented
with GPU threads

• Load-balancing by bucketing of vertices
that have nearly identical degree

Limitations:
• Maximum problem size limited by GPU

memory
• Optimizations applicable for single GPU

300

90

20

22

Distributed Grappolo: Vite

We implement heuristics on top of the baseline distributed version, yielding speedups
of up to 2.5-46x (compared to baseline), modularity affects sometimes by ~8-20%

However, heuristics have little impact for some inputs! 23

cuVite: Experiments on Summit

(a) 25 million vertices. (b) 33 million vertices. (c) 67 million vertices.

(a) ljournal dataset. (b) Hollywood-2009 dataset. (c) UK-2002 dataset.

(a) uk-2005 dataset. (b) nlpkkt-240 dataset. (c) com-Friendster dataset.

performance enhancement using work sharing between CPUs
and GPUs using multi-threaded implementation on CPUs;
and large-scale application study for community detection in
graphs from life sciences and atmospheric radiation measure-
ments.

ACKNOWLEDGMENT

We used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory (Contract No.
DE-AC05-00OR22725). The research is supported by the U.S.
DOE ExaGraph project at the Pacific Northwest National
Laboratory (PNNL) and by NSF awards CCF 1815467 and
OAC 1910213 at Washington State University (WSU). PNNL
is operated by Battelle Memorial Institute under Contract DE-
AC06-76RL01830.

REFERENCES

[1] F. Alexander, A. Almgren, J. Bell, A. Bhattacharjee, J. Chen, P. Colella,
D. Daniel, J. DeSlippe, L. Diachin, E. Draeger, A. Dubey, T. Dunning,
T. Evans, I. Foster, M. Francois, T. Germann, M. Gordon, S. Habib,
M. Halappanavar, S. Hamilton, W. Hart, Z. (Henry) Huang, A. Hunger-
ford, D. Kasen, P. R. C. Kent, T. Kolev, D. B. Kothe, A. Kron-
feld, Y. Luo, P. Mackenzie, D. McCallen, B. Messer, S. Mniszewski,
C. Oehmen, A. Perazzo, D. Perez, D. Richards, W. J. Rider, R. Rieben,
K. Roche, A. Siegel, M. Sprague, C. Steefel, R. Stevens, M. Syamlal,
M. Taylor, J. Turner, J.-L. Vay, A. F. Voter, T. L. Windus, and K. Yelick.
Exascale applications: skin in the game. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
378(2166):20190056, 2020.

[2] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin,
and J. C. Sancho. Entering the petaflop era: The architecture and
performance of roadrunner. In SC ’08: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, pages 1–11, 2008.

[3] A. Bhowmik and S. Vadhiyar. Hydetect: A hybrid cpu-gpu algorithm
for community detection. In 2019 IEEE 26th International Conference
on High Performance Computing, Data, and Analytics (HiPC), pages
2–11. IEEE, 2019.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment, 2008(10):P10008, 2008.

[5] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski,
and D. Wagner. On modularity clustering. IEEE transactions on
knowledge and data engineering, 20(2):172–188, 2007.

[6] C. Y. Cheong, H. P. Huynh, D. Lo, and R. S. M. Goh. Hierarchical
parallel algorithm for modularity-based community detection using
gpus. In European Conference on Parallel Processing, pages 775–787.
Springer, 2013.

[7] J. J. Dongarra. Performance of various computers using standard linear
equations software. SIGARCH Comput. Archit. News, 20(3):22–44, June
1992.

[8] S. Ghosh, M. Halappanavar, A. Tumeo, and A. Kalyanarainan. Scaling
and quality of modularity optimization methods for graph clustering. In
2019 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–6. IEEE, 2019.

[9] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, and A. H.
Gebremedhin. Scalable distributed memory community detection using
vite. In 2018 IEEE High Performance extreme Computing Conference
(HPEC), pages 1–7. IEEE, 2018.

[10] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu,
D. Chavarria-Miranda, A. Khan, and A. Gebremedhin. Distributed
louvain algorithm for graph community detection. In 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),

6

24

• Preliminary results for strong
scaling on up to 64 nodes on
Summit

• Significant overhead due to data
structure limitations

• Hybrid CPU-GPU code is harder
to optimize due to load
imbalances

• Several optimizations are planned
for implementation

References: Community detection
o [Grappolo] H Lu, M Halappanavar, and A Kalyanaraman. "Parallel Heuristics for Scalable Community Detection." In Elsevier Journal of Parallel Computing: Systems

and Applications (ParCo). Volume 47, August 2015, Pages 19--37. DOI: doi:10.1016/j.parco.2015.03.003. (Open access article).

o [Vite] S Ghosh, M Halappanavar, A Tumeo, A Kalyanaraman, H Lu, A Khan, and A Gebremedhin. "Distributed Louvain Algorithm for Graph Community Detection."
In proceedings of the 32nd IEEE International Parallel & Distributed Processing Symposium. May 21 – May 25, 2018. Vancouver, Canada.

o [miniVite] S Ghosh, A Kalyanaraman, A Gebremedhin, M Halappanavar, A Tumeo. "miniVite: A Graph Analytics Benchmarking Tool for Massively Parallel Systems."
2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High-Performance Computer Systems (PMBS). Dallas, TX, USA.

o [Rundemanen] M. Naim, F. Manne, M. Halappanavar and A. Tumeo, "Community Detection on the GPU," 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Orlando, FL, 2017, pp. 625-634.

o [Book] A Kalyanaraman, M Halappanavar, D Chavarría-Miranda, H Lu, K Duraisamy and P Pratim Pande. "Fast Uncovering of Graph Communities on a Chip: Toward
Scalable Community Detection on Multicore and Manycore Platforms", Foundations and Trends® in Electronic Design Automation: Vol. 10: No. 3, pp 145-
247. http://dx.doi.org/10.1561/1000000044

o S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman. “Scaling and quality of modularity optimization methods for graph clustering.” In Proceedings of the IEEE
High Performance Extreme Computing (HPEC'19), 6 pages, 2019. [Amazon Graph Challenge Innovation Award]

o D Chavarría-Miranda, A Panyala, M Halappanavar, J Manzano, and A Tumeo. "Optimizing Irregular Applications for Energy and Performance on the Tilera Many-
core Architecture." In proceedings of the ACM International Conference on Computing Frontiers, Ischia, Italy. May 18-21, 2015.

o S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman and A. Gebremedhin, "Scalable Community Detection Using Vite." In proceedings of the 2018 IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA, 2018. [Amazon Graph Challenge Student Innovation Award]

o M. Halappanavar, H. Lu, A. Kalyanaraman and A. Tumeo, "Scalable static and dynamic community detection using Grappolo." In proceedings of the 2017 IEEE
High Performance Extreme Computing Conference (HPEC), Waltham, MA, 2017, pp. 1-6. [DARPA/Amazon Graph Challenge Champions]

25

26

Other graph algorithms

• Matching or linear assignment problem
§ B-matching, submodular matching, covering, streaming, etc.

• Graph coloring
§ Distance-1 coloring, balanced coloring, partial distance-2 coloring, etc.

• Network alignment
§ Framework for using heuristics, subgraph isomorphism

• PageRank centrality computations
§ Approximate computing for scalability, Laplacian solver

• Chordal subgraph extraction

Intro Inf max Com-det Other algos

Thank you.

www.exagraph.org
27

