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Summit: Pre-exascale (IBM+Nvidia)

/ Summit “Witherspoon” Node

(2) IBM Power9 + (6) NVIDIA Volta V100

TESLA V100

21B transistors
815 mm?

5120 CUDA Cores
640 Tensor Cores

16 GB HBM2
900 GB/s HBM2 ;
300 GB/s NVLink

Single GPU Single Node Distributed Multi-GPU Cluster
(2048 x 80) threads) (6 GPUs) (4608 nodes)

2048 Threads 80 SMS 6 GPUs

M X ——— GPU Node ——x 4608 Nodes= GPU Threads




Significant Challenges

TESLA V100

218 transistors

Summit “Witherspoon” Node
(2) 1IBM Power9 + (6) NVIDIA Volta V100
‘‘‘‘‘‘‘‘‘‘‘
$ 1ssces 4 13sces
CPUO CPU 1
_m _—7‘1”" _m _m __zwmwm __uuu—u‘n
16 GB HBM2
900 GB/s HBM2
300 GB/s NVYLink | e P | [Eoww ] [Eon) | [
Grid
[ | GPUO 4| GPUT (4| GPU2 | | GPU3 4| GPU4 || GPUS |
Thread Block 0 Thread Block 1 Thread Block N-1 | _ : . ; : .
‘ R [(RE] [&3 B (RS (&S
‘ LA R
NNNNN ) (100 GBIs) 1 (900 GBIs)
Shared memory \ Shared memory ‘ Shared memory K /

Load balancing * Load balancing

Work-division between host * Communication and
computation balance

* Load balancing

* Sparse & irregular
memory accesses and GPU(s)

» Coalesced memory Deep memory hierarchies * Complicated programming
accesses (unified memory) models (MPI+...+...)

e SIMD & thread Data movement * Data movement
divergence




Influence maximization
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Image Credit: https://blog.edmentum.com/making-social-network-work-school




Algorithm

The influence maximization problem

* Given: A graph G=(V, E, w ), a diffusion model (how a vertex gets activated
based on the state of its neighbors), and a budget k, the influence
maximization problem is stated as follows:

-

\_

Find a set of k vertices called the seed set S, that when activated results in
maximal activations in the network amongst all possible sets of k vertices

J

(2 =
e Two diffusion models studied in our work:

= Linear Threshold: A vertex can get activated if a fraction of neighboring vertices that are
active is greater than a threshold ©,,

= Independent Cascade: One shot chance for an activated vertex to activate its neighbor



Submodularity: An illustrative example
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An illustration of submodular optimization for sensor placement in a complex cyber-physical system. The blue areas
represent the current coverage, while the red area indicate the gain obtained by adding an additional sensor. As
can be observed in the figure on right, if more sensors are already placed, there will be diminishing returns from




Greedy Hill Climbing: Key steps

AR

1. Generate a set of n random samples SG
s ' = Different instantiations of G are computed based on the edge probabilities
1 7 AN
2. Repeat until k most influential nodes are chosen:

1. Compute the influence of a chosen node across different samples w.r.t. the current

& seed set S
. 2. Pick the best influential node, and add to S

» Key algorithmic difference between Linear Threshold and Independent
Cascade algorithms arise in Step 1 (generation of random samples)

» Approximation Factor: (1 - 1/e) - €  (submodularity)




Application

EpiControl: Controlling epidemic spread

Il WIiTHOUT PREEMPT
W PreemMpT(1000)
Bl PreeMPT(5000)

w
ot
1

® EriConTrOL: Given a graph G, a set of

initially infected nodes B, and a budget k,
find a set of nodes SCSV to vaccinate, such
that |SI<k and E[A(S)] is maximized, where
A(S) represents the number of lives saved
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Percentage of population infected

®* PREEMPT: Given a graph G and budget k,

f'hd a Set Of nOdeS Sg\/to VaCC|nate, SUCh 0 Portland-141k Portland-295k Portland-415k

that |SI<k and E[c(S)] is maximized, treatin
S as the initial set of activated nodes, and

where g (S) represents the reachability of S
Even with relatively low budgets for vaccination (1000

in G
- d 5000 nodes), btai here bet 2.61
* EriConTroL on trees is submodular 15000 oded) ve oban snyunere beveen 261

without PREEMPT.

9 A comparison of the percentages of population
infected with and without our proposed method

PrREEMPT, for three contact networks of Portland.

Acknowledgements: Sambaturu, Vullikanti, et al.



Software

Ripples & cuRipples

Scalable implementations (shared and distributed memory systems)
https://github.com/pnnl/ripples

£=0.50, k=100

1319.21 £=0.13, k=200

Runtime in seconds (log2 scale)

\d
oc.,+
&
&

o

CuRipples achieves a speedup of 790x over a state-of-the-art serial
implementation, while also significantly improving the quality.
The input network is com-Orkut.



https://github.com/pnnl/ripples
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(e) Portland

16 32
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64 128

(f) Montgomery

+ Counting step dominates total time, and
scales well -- large speedups (e.g.,
Slashdot: 63x, Montgomery: 155x)

e Strong scaling: Speedups for 128 nodes
between 20x and 33x relative to two nodes
of Summit

* Significantly reduces time to solution from
hours to minutes (Slashdot: 1.8 hours on
two Summit nodes vs. 3.2 minutes on 128
Summit nodes)

Strong Scaling using SNAP networks (a-d) and the Contact Networks (e-f).
Missing data points are executions that did not complete under two hours.



Strong scaling on Summit (Rev Reachable)

TABLE II: Comparative evaluation of cuRipples relative
@ BerkStan 4 Livedournal %X Orkut

Input to previous implementations of IMM—both serial (IMMg)
@ Google == Montgomery =K Portland [2] and parallel (IMM gpumyedison) [3]. Abbreviations used: No.
Cores (C), GPUs (G), Nodes (N).
256 - System Time (s) Speedup Scale
com-Orkut (e=0.5.k=100)
MM, 28024.56 1.00 1C
IMM,,,, 9027.50 3.10x 1C
IMM,,, 1319.21 21.24x 20C (IN)
. CuRipplesg,. ), 3547 T790.09x SOC+8G (IN)
<L 64 CuRipples, ... 4372  641.00x 128C+4G (IN)
(0]
E com-Orkut (e=0.13,k=200)
S IMM._gicon 294.51 95.16x 3,072C (64N)
g IMM.gison 47.77 586.61 x 49,152C (1024N)
§ CuRipples,ymmit 36.30  772.03x  2,688C+384G (6G4N)
. soc-LiveJournall (¢=0.5,k=100)
MM, 3954.59 4.16x 1C
IMM,,, 1026.21 16.02x 20C
* CuRipplesggy. 1y 70.23 234.01 x 80C+8G (1IN)
— _.|_ b _+_ CuRipples,.yen 65.26 251.84% 128C+4G (IN)
T T T T T T T - 1 — ':7
5 A z 5 3 ) 158 soc-LiveJournall (¢=0.13,k=200)
Number of Summit Nodes IMM . gicon 190.94 86.07 x 3,072C (64N)
IMM.gicon 55.12  298.16x 49,152C (1024N)

Strong Sca | | ng USi ng S NAP netwo rks CuRipples,,mmit 106.43 154.42x  2,688C+384G (64N)
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Algorithm

Graph Clustering

* Problem: Given G=(V, E, w), identity tightly knit groups
(clusters) of vertices that strongly correlate to one another
within their group, and sparsely so, outside

Input :

e V={12,...n}

 E:asetof Medges

* w(e): weight of edge e
(non-negative)

* m= Ve ek C()(e)

OQutput :

A partitioning of Vinto

k mutually disjoint clusters
P={C, C,...C}

such that: ...




Louvain method (Blondel et al. 2008)

Input: G=(V,E)

Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

4

Upon no further

modularity gain @

I

Next
phase

Multi-phase multi-iterative heuristic

Within each iteration:

* For every vertex i € V.
1. Let C(i) : current community of i

2. Compute modularity gain (4Q) for
moving i into each of i's neighboring
communities

3. Let C, ., : neighboring community with
largest AQ

4. 1f (40>0) {Set C(i)=C, .}




Our Parallel Algorithm: Grappolo

PARALLEL FOR each vertex i € V_:
G(V’E.’fo) 1. Let C(i) : current community of i
Vertex 2. Com.put.e.modularity gain (4@) for
Following* moving i into each of i's neighboring
3 I communities
Coloring"w)pr ol 3. Let C,., : neighboring community
with largest 4AQ (ML)
4. 1t (4Q>0) {Set C(i) = C,, .}
\ 4
no
Check for convergence
¥ yes

GVIELO)  (— Transform graph by collapsing
communities into nodes

* Steps are optional Rebuilding is nontrivial, but takes 1-10% of total time



Application

FastPG: Fast clustering of millions of single cells

Step 1. kNN-approximation HNSW, which has
logarithmic scaling due to the hierarchical structure
of the search space (depicted). The output of this
step is a network of cells, where each node is a cell
and neighbor are connected by an edge.

Step 1 Step 2 Step 3

Step 2. Modification of the Jaccard index step to run
in parallel, depicted as being distributed to each
thread of the CPU. This step adds weights to the
network, which are represented as different edge
thicknesses.

Step 3. Grappolo: The output of this step is the
assignment of cells to communities, which was
depicted with different colored nodes.

Lead: Sara Selitsky https://www.biorxiv.org/content/10.1101/2020.06.19.159749v2



https://www.biorxiv.org/content/10.1101/2020.06.19.159749v2

FastPG: “Gold standard” datasets

Levine13 Levine32
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PhenoGraph A
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FlowSOM -

Log10(minutes)

Log10(Number of cells)

(Left) Boxplot displaying the F-measure for four mass cytometry “gold standard” datasets.

(Right) Runtime comparisons between PhenoGraph, FastPG, PARC, and FlowSOM.

0000

https://www.biorxiv.org/content/10.1101/2020.06.19.159749v2
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Software

Tools

Grappolo

A multithreaded C++ and OpenMP library for graph clustering (community detection) based on the
Louvain method. Several heuristics including distance-1 coloring and vertex following are used to
parallelize the Louvain method efficiently.

Click this link to download the source code (08-2015)
Email Mahantesh for the latest version (will be made available soon)

Developers: Mahantesh Halappanavar and Howard (Hzo) Lu with contributions from Sayan Ghosh,
Ananth Kalyanaraman and Daniel Chavarnia

License: BSD 3-Clause license (Open Source Initiative ).

= Grappolo: Scalable multi-threaded
implementation using OpenMP

Rundemanen: Scalable single-GPU
implementation using CUDA

Vite: Scalable distributed-memory

implementation using MPI+OpenMP

cuVite: Scalable distributed-memory
implementation MPI+OpenMP+CUDA

miniVite: Simplified variant of Vite for

benchmarking (ECP Proxy App)

-

Photograph graciously provided by Jagan Bontha.

http://hpc.pnl.gov/people/hala/grappolo.html

Vite
A distributed-memory implementation of Grappolo in C++ using MPI and OpenMP.
Click this link to download the source code (03-2018)
Developers: Sayan Ghosh, Daniel Chavarria and Antonino Tumeo with contributions from Hao

Lu, Mahantesh Halappanavar, Ananth Kalyanaraman and Assefaw Gebremedhin
License: BSD 3-Clause license (Open Source Initiative ).

miniVite
A simplified version of Vite for benchmarking purposes, targeting distributed-memory platforms
using MPI and OpenMP. Part of ECP Proxy Applications Suite.
Click this link to download the source code (09-2018)
Alternate link for download (Github)
Developers: Sayan Ghosh, Daniel Chavarria, Antonino Tumeo with contributions from Hao Lu,

Mahantesh Halappanavar, Ananth Kalyanaraman and Assefaw Gebremedhin
License: BSD 3-Clause license (Open Source Initiative ).

Rundemanen

CUDA C++ parallel program for community detection.

Developers: Md Naim (naim.md@gmail com) and Fredrik Manne (Fredrik. Manne@uib no)
University of Bergen

License: BSD 3-Clause license (Open Source Initiative )



http://hpc.pnl.gov/people/hala/grappolo.html

Single-GPU
300
Algorithmic innovation:
* Edge-centric parallelism implemented -
with GPU threads 3
« Load-balancing by bucketing of vertices §
that have nearly identical degree A
Limitations: 90— j:
*  Maximum problem size limited by GPU ’
memory 20 l| l| II
 Optimizations applicable for single GPU 20 - ..,[lllll. ﬂI“.V.,,;l,llﬂ“ il | ”I 1l l".'%‘ﬂ

Naim, Manne, Halappanavar, and Tumeo. Community
Detection on the GPU. In 2017 IEEE International
Parallel and Distributed Processing Symposium
(IPDPS) (pp. 625-634).

Speedup w.r.t. sequential (Blondel et al.)



Distributed Grappolo: Vite
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Fig. 7. Scalability of protein k-mer graphs.

We implement heuristics on top of the baseline distributed version, yielding speedups
of up to 2.5-46x (compared to baseline), modularity affects sometimes by ~8-20%
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Fig. 1. Parallel heuristics have little effect on RMAT generated Graph500 graphs.

However, heuristics have little impact for some inputs!
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cuVite: Experiments on Summit
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(a) 25 million vertices.
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(a) Ljournal dataset.
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(a) uk-2005 dataset.
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(b) 33 million vertices.
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(c) 67 million vertices.
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(c) com-Friendster dataset.

Preliminary results for strong
scaling on up to 64 nodes on
Summit

Significant overhead due to data
structure limitations

Hybrid CPU-GPU code is harder
to optimize due to load
imbalances

Several optimizations are planned
for implementation
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Other algos

Other graph algorithms

Matching or linear assignment problem
* B-matching, submodular matching, covering, streaming, etc.

Graph coloring
» Distance-1 coloring, balanced coloring, partial distance-2 coloring, etc.

Network alignment
* Framework for using heuristics, subgraph isomorphism

PageRank centrality computations
= Approximate computing for scalability, Laplacian solver

« Chordal subgraph extraction
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